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Abstract—We propose two scheduling algorithms that seek to
optimize the quality of scalably coded videos that have been
stored at a video server before transmission. The first scheduling
algorithm is derived from a Markov decision process (MDP)
formulation developed here. We model the dynamics of the
channel as a Markov chain and reduce the problem of dynamic
video scheduling to a tractable Markov decision problem over a
finite-state space. Based on the MDP formulation, a near-optimal
scheduling policy is computed that minimizes the mean square
error. Using insights taken from the development of the optimal
MDP-based scheduling policy, the second proposed scheduling
algorithm is an online scheduling method that only requires
easily measurable knowledge of the channel dynamics, and is thus
viable in practice. Simulation results show that the performance
of both scheduling algorithms is close to a performance upper
bound also derived in this paper.

Index Terms—Scheduling algorithm, videos transport, wireless
communication.

Nomenclature

F intra Number of frames in a intraperiod.
FGOP Number of frames in a GOP.
L Number of MGS layers.
zt The amount of received data for the frame played out

at t.
ωk

� The amount of data in the �th layer of a type-k frame.
d� The distortion when the �th layer is correctly received.
dk(zt) The rate-distortion model for type-k frames.
d̂k(zt) The concave envelopes of dk(zt).
Xt The transmission bit rate at t.
Yt The packet error rate at t.
Rt The channel throughput at t.
ravg The average channel throughput.
Ct The channel state at t.
Vt The buffer state at t

St The system state at t.
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I. Introduction

THE VARIATION of wireless channel capacity and tight
delay constraints make the delivery of video difficult.

Although adaptive transmission strategies, such as adaptive
video data scheduling, can be employed, deriving the optimal
adaptive transmission policy is difficult because the transmis-
sion strategies taken at different time are coupled with each
other via receiver buffer state. Furthermore, due to the nature
of predictive video coding algorithms, a video frame can be
decoded only when its predictors have been received. Hence,
the prediction structure of the video codec enforces a partial
order on the transmissions of the video packets, which limits
the flexibility of adaptive video transmission.

Scalable video coding (SVC) is one approach to enable flex-
ible video transmission over channels with varying throughput
[1], [2]. An SVC video encoder produces a layered video
stream that contains a base layer and several enhancement
layers. If the throughput is low, the transmitter can choose
to transmit the base layer only, which provides a moderate,
but acceptable, degree of visual quality at the receiver. If the
channel conditions improve, the transmitter can transmit one,
or more, enhancement layers to further improve the visual
quality. Conceptually, SVC provides a means to adapt the data
rate for wireless video transmission. The wireless transmitter
can adapt the data rate by selectively scheduling video data
associated with various layers for transmission rather than
transcoding the video sequence into a different rate.

Designing scalable video scheduling algorithms for wireless
channels is a complex task. The scheduling policy depends
not only on the channel conditions, but also on the receiver
buffer state. For example, if the receiver has successfully
buffered base layer data over many frames, the scheduler could
choose to transmit some enhancement layer data to improve
the video quality even if the throughput is low. At any time,
the scheduling decision will determine the receiver buffer state
which, in turn, affects the future scheduling decisions. There-
fore, adaptive video data scheduling is a sequential decision
problem. The most natural way to address such problems is to
model the dynamics of the channel as a finite-state Markov
chain (FSMC) and to employ a Markov decision process
(MDP)-based formulation to study scheduling methods. For
stored video transmission, however, directly determining an
optimal scheduling policy using an MDP formulation is not
possible, because the system state space is infinitely large
(Section III-A). Moreover, in a practical wireless network, a
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model for the dynamics of the channel states is not typically
available, which limits the applicability of this approach.

A. Contributions

The objective of this paper is to leverage the MDP frame-
work to develop practical scheduling algorithms and optimize
the receiver video quality for stored scalable video transmis-
sion over wireless channels. First, we propose a tractable MDP
formulation based on a reasonable approximation of the state
space. Near-optimal scheduling policies can be derived from
this MDP formulation. Second, we propose a scheduling algo-
rithm that substantially simplifies the MDP-based scheduling
policy as it requires only limited information regarding the
channel state dynamics. Third, we prove an upper bound
on the achievable video quality of all possible scheduling
algorithms. Finally, we provide simulation results that show,
under different channel conditions, the performance of the
proposed scheduling algorithms is indeed very close to the
upper bound.

Our contributions are summarized in the following.

1) An MDP formulation is proposed to facilitate the de-
sign of adaptive scheduling policies for stored video
transmission. In this paper, we focus on stored video
transport, where video sequences have been encoded and
stored on a video server before transmission. This is
quite different from real-time video transmission where
video frames are generated in real time. The video
scheduler can select any data from the video sequence
and send the data to the receiver buffer. Thus, the number
of possible receiver buffer states can be effectively
regarded as infinite. Because the performance of the
scheduling policy depends on the receiver buffer state,
the policy needs to be optimized over an infinitely large
state space and the scheduling problem is intractable.
In this paper, by applying reasonable restrictions on
the set of scheduling policies considered in our MDP
formulation, we prove that optimizing the transmission
policy is equivalent to solving a semi-Markov decision
problem on a finite-state set (Section III). Based on this
result, near-optimal scheduling policies can be derived
using the proposed MDP formulation.

2) A near-optimal and online scheduling algorithm is pro-
posed. In most cases, models for channel dynamics are
not available. By simplifying the channel model and
the scheduling decision of the MDP formulation, we
devise an online scheduling algorithm which, unlike
the MDP-based policy, only requires limited measurable
knowledge of the channel dynamics. Simulation results
show that the proposed online algorithm performs nearly
as well as the MDP-based scheduling policy.

3) Performance optimality is justified. To assess the per-
formance of the proposed scheduling algorithms, an
upper bound on the achievable video quality for adaptive
scheduling is proved. Simulation results show that both
the MDP-based scheduling policy and the proposed
online scheduling policy perform close to the upper
bound.

B. Related Work
Adaptive video data scheduling is an important topic of

research [3]–[12]. In [3], adaptive video transmission over a
packet erasure channel was studied by modeling the buffer
state as a controlled Markov chain. In [4], an average-rate-
constrained MDP formulation was proposed to optimize the
quality of error-concealed videos at the receiver. For time-
varying wireless channels, the amount of data that can be
scheduled during a time slot is limited by the channel ca-
pacity at the slot. Only considering the constraint of the
average transmission rate is insufficient. In [5], an MDP-based
scheduling algorithm was proposed for video transmission
over packet loss networks. This paper was further extended for
wireless video streaming in [6], where the wireless channel
was modeled as a binary symmetric channel. This channel
model can only be justified for fast-fading channels, where the
coherence time is much less than the delay constraint. In that
case, interleaving can be applied without violating the delay
constraint, and the channel will appear as an i.i.d. channel.
For slow-fading channels, such as those considered here, the
bit error rate cannot be modeled as a constant. In [7], adaptive
scheduling of scalable videos was studied using an MDP
model. The reward of each frame slot was defined as a utility
function of the buffer state and the transmission rate. A fore-
sighted scheduling policy was derived to maximize the long-
term reward over all frame slots. Comparing with a scheduling
method that myopically maximizes the reward of each individ-
ual frame slot, the proposed scheduling algorithm improved
the video quality significantly. In [8]–[11], reinforcement
learning frameworks were proposed for wireless video trans-
mission. Their proposed algorithms were based on MDP using
a discounted-reward maximization formulation. The transmit-
ter learns the characteristics of the channel and the video
sequence during the transmission process. The scheduling pol-
icy is updated according to the learned characteristics. In our
previous work [12], an infinite-horizon average-reward maxi-
mization MDP formulation was proposed. The channel char-
acteristics, unlike in this paper, were assumed to be known.

The most closely related prior work is [6]–[11], which focus
on scalable video transmission over wireless channels. Our
paper contrasts with these as follows.

1) An infinite-state space problem for stored video stream-
ing: For real-time video transmission, the number of
video frames that are ready for transmission is finite
because later frames have not yet been generated at the
video source. Therefore, the scheduler only needs to
select data from a finite set of frames [6]–[10]. In this
paper, we focus on stored video streaming, where all the
video frames have been encoded before transmission. In
this case, the scheduler is allowed to select data from
any video frame and the number of possible receiver
buffer states is therefore infinitely large. In this paper,
we construct a finite-state MDP model and show that
the optimal policy derived from this MDP model is also
optimal for the original infinite-state problem.

2) Channel model: We focus on slow-fading wireless chan-
nels experienced by pedestrian users. In the channel
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model of [6], the bit error probability of the channel
was assumed constant. This assumption can only be
justified for fast-fading channels, where the channel
coherence time is much less than the delay constraint
in video applications. In that case, interleaving can be
applied without violating the delay constraint, and the
channel will appear to have i.i.d. bit errors. For slow-
fading channels, where the coherence time is much
longer, it is impossible to apply interleaving over many
coherence periods due to the delay constraint. In this
case, i.i.d. models are no longer suitable because they do
not capture information regarding channel variations. In
contrast, the algorithm proposed in this paper explicitly
considers channel state variation in scheduling.

3) Optimization objective: Most of the existing MDP-based
scheduling algorithms are based on a utility function as
the optimization objective [7]–[10]. The utility function
is usually written as a weighted sum of the transmission
bit rate and the amount of buffered data. The weights
assigned to each component of the summation, to some
extent, reflect their importance, but are heuristically
chosen. The resulting utility function cannot accurately
indicate the quality of played out frames. Here, instead
of optimizing a utility function, we directly optimize the
quality of the video frame played out in each frame slot.

4) Nonavailability of channel state dynamics: In a practical
wireless video transmission application, models for the
dynamics of the channel state are typically unavail-
able. To address this problem, a reinforcement learning
algorithm can be employed to learn a good policy
from making wrong scheduling actions [8]–[10]. Video
quality, however, will be degraded during the learning
period, which can be as long as tens of seconds. We
propose an adaptive alternative to such reinforcement
learning methods that only uses the channel coherence
time and current channel throughput which are easy to
measure in practice. The performance of the proposed
algorithm is very close to a derived performance upper
bound.

C. Organization of This Paper

This paper is organized as follows. The system model is
introduced in Section II. The assumptions we make about
the video codec and the rate-distortion model are described
in Section II. In Section III, the MDP formulation and the
performance upper bound are proposed. A near-optimal online
scheduling algorithm is introduced and validated by simula-
tions in Section IV. Section V concludes the paper.

II. System Model

In this section, we describe the wireless video system to be
considered. Then, we present our video codec configuration
and introduce the rate-distortion model.

We briefly introduce some notation used in the paper. A
and a are examples of a matrix and a vector, respectively.
A is a set. |A| is the cardinality of set A. �·� is the
ceiling function. P(·) is the probability measure and E[·] is

Fig. 1. Dynamic scheduling system for wireless video transmission.

the expectation. N = {0, 1, 2, · · · } is the set of nonnegative
integers. Other frequently used notations are summarized in
the Nomenclature.

A. System Overview

We consider a time-slotted system that transmits scalable
videos over a slow-fading wireless channel. The video se-
quence is encoded with a quality-scalable video encoder and
is stored in a video server. The video server transmits video
data to a mobile user via a wireless transmitter. The duration
of each frame �T is called a frame slot. In each frame
slot, the server sends some video data upon request of a
scheduler at the wireless transmitter. This data are packetized
at the wireless transmitter for physical layer transmission. The
channel and receiver buffer state is sent to the scheduler via a
feedback channel with negligible delay. The scheduler operates
according to a policy that maps the channel and receiver buffer
state to the scheduling action (Fig. 1).

In wireless communication systems such as 3GPP, using
the technique of limited feedback, channel state information
measured at the receiver can be fed back to the transmitter via
a control channel [13]–[15]. The delay of the feedback channel
is typically much smaller than a frame slot. For example, the
feedback delay in 3GPP is 6 ms [15], which is much shorter
than the 33 ms frame slot of 30 frames/s videos. Similarly, the
video packets received in each slot can also be acknowledged
via a control channel with negligible delay. Therefore, similar
to most of existing MDP formulations such as [7]–[10], we
assume the feedback is instantaneous. For the case where
feedback delay is longer than a frame slot [16].

We assume that the link between the video server and the
wireless transmitter is not the bottleneck for transmission to
the mobile. Thus, from the perspective of the wireless transmit-
ter, the whole video sequence is available for transmission. We
also assume that the physical layer channel state information is
available at the transmitter and that the modulation and coding
scheme is determined by a given physical layer link-adaptation
policy.

B. Video Codec Configuration

We assume that the video sequence is encoded by an
H.264/SVC video encoder. The video frames are uniformly
partitioned into intraperiods. Every intraperiod has F intra

frames and is further partitioned uniformly into group of
pictures (GOPs). Each GOP has FGOP frames. They are
encoded using the “Hierarchical B" prediction structure [1],
in which video frames are hierarchically organized into T

temporal layers as shown in Fig. 2. The last frame in each
GOP is called a key picture. These key pictures form the 0th
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Fig. 2. Encoder prediction structure considered in this paper. The prediction
order is indicated by arrows. The length of intraperiod is F intra = 8 and the
GOP length is FGOP = 4. The CGS enhancement layer is partitioned into
three MGS layers.

temporal layer. There are two types of key pictures: I frames
and P frames. The first picture in an intraperiod is called an I

frame, which is encoded without referring other frames. The
other key pictures are P frames. Each P frame is encoded
using a preceding key pictures as reference. All the frames in
higher temporal layers are B frames. A B frame in the τth
temporal layer is encoded using the preceding frame and the
succeeding frame in the lower temporal layers as reference. In
the following, we call a frame in the τth temporal layer a Bτ

frame, where τ ≥ 1 (Fig. 2).
Every frame is encoded into a base layer and a coarse

grain scalability (CGS) layer. The base layer of an I frame
is encoded independently. The base layer of a P frame is
predictively encoded using the base layer of the preceding
key picture. The CGS layer of all key pictures is predictively
encoded using their respective base layers. For a B frame, its
base layer is encoded using the CGS layers of its reference
frames. Its CGS layer is encoded using both its base layer and
the CGS layers of its reference frames (see Fig. 2).

The CGS layer of each frame is further partitioned into L

MGS layers. Each MGS layer contains a portion of the CGS
layer data. Thus, the more MGS layers are received, the higher
decoding quality can be achieved. In the following, we call
the base layer and the MGS layers quality layers. We focus
on adaptive scheduling of the quality layers in a video stream.
The temporal scalability is not exploited.

In this paper, we only consider one CGS enhancement layer.
In H.264/SVC, multiple CGS layer is supported and each CGS
layer can be partitioned into several MGS layers. The switch
between CGS layers, however, is only possible at instanta-
neous decoder refresh (IDR) frames, which are separated from
each other by several intraperiods. Therefore, CGS cannot
support frame-by-frame rate adaptation. Since the coherence
time of wireless channels is much shorter than a intraperiod,
flexible rate adaptation can only be achieved by MGS, which
allows us to vary the number of quality layer for each frame.
Here, we consider frame-by-frame adaptive scheduling of the
MGS layers within a single CGS enhancement layer. For the
video streams that contain multiple CGS enhancement layers,
our scheduling algorithm can be applied to conduct adaptation
in one of the CGS enhancement layers while treating all lower
layers as the base layer. In the following, we call the MGS
layers enhancement layers.

Each frame has a playout deadline at the receiver. In the
following, frames whose deadlines have expired are called

Fig. 3. Indices of data units when three quality layers are considered. At the
beginning of each time slot, the frame with index f = 0 is played out. All
the data units in the figure shift left.

Fig. 4. Rate-distortion function df (zf ) for the f th frame. The rate-distortion
function df (zf ) is piecewise constant and right-continuous (solid). Its convex
envelope ̂df (zf ) is also shown (dashed).

expired frames; otherwise, they are said to be active frames.
The first active frame is called the “current frame.” The GOP
that contains the current frame is called the “current GOP.”
The intraperiod that contains the current frame is called the
“current intraperiod” (see Fig. 3). The frames in the current
GOP are decoded together when the first frame of the GOP
is displayed. At any point in time, frames are indexed relative
to the current frame as shown in Fig. 3. Each data unit is also
tagged with a layer index �. The index for base layer is � = 0
and the enhancement layers are index from 1 to L. The video
data in the �th layer of the f th frame are called the (f, �)th
video data unit.

C. Rate-Distortion Model

Let zf be the amount of received data for the f th frame.
The rate-distortion function df (zf ) captures the quality of the
frame when it is decoded, given all its predictors have been
received. Let ω(f,�) be the amount of data in the (f, �)th data
unit and d(f,�) be the distortion measured in mean square error
(MSE) if the 0th ∼ �th layers have been correctly received.
As shown in Fig. 4, since a data unit can be decoded only
when all its associated data has been received, df (zf ) is a
piecewise constant and right-continuous function with jumps
at zf =

∑m
�=0 ω(f,�), m = 0, 1, . . . , L. Thus, d(f,�) and ω(f,�)

characterize df (zf ).
In a real video sequence, for a given layer �, the rate-

distortion characteristics ω(f,�) and d(f,�) vary across frames.
Let K = {I, P, B1, . . . , BT } be the set of frame types. We
model ω(f,�) of type k frames as i.i.d. realizations of a random
variable �k

�, where k ∈ K. Then, we use ωk
� = E[�k

�] as an
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estimate of ω(f,�). Similarly, for a given layer �, we model
d(f,�) as i.i.d. realizations of a random variable D�. We use
d� = E[D�] as an approximation of d(f,�). Here, we choose not
to distinguish the frame types when modeling d(f,�). In a typical
H.264/SVC video stream, the quantization parameters (QPs)
of the encoder are usually configured to minimize visually
annoying quality fluctuations across different types of frames.
Hence, for simplicity, we use a single random variable D� to
model d(f,�) for all types of frames.

Our rate-quality models dk(zf ) for type-k frames are con-
structed as piecewise constant functions with jumps at zf =∑m

�=0 ωk
� , m = 0, 1, . . . , L. For stored video transmission,

which is the focus of this paper, since the transmitted video
has already been encoded, the size of each data unit is thus
available. The parameters {ωk

�, k ∈ K} can thus be estimated
by averaging across frames. If the distortion characteristic d(f,�)

is calculated when the video is encoded, the parameter d� can
also be estimated by averaging d(f,�) across frames. If d(f,�) is
not available, d� needs to be estimated online. For example,
the quality of frames that have been decoded at the receiver
can be fed back to the transmitter for estimation.

D. Streaming Setup

We focus on scheduling for a slow-fading channel. By slow
fading, we mean that the coherence time of the channel is less
than the duration of an intraperiod and larger than a frame slot.
Assuming the mobile users are moving in a 1.5 m/s walking
speed and the carrier frequency is 2 GHz, the Doppler spread is
about 10 Hz. The coherence time is about 100 ms. A typical
intraperiod duration is about 1 s and a frame slot is about
30 ms. Hence, for pedestrian video users, wireless channels
are slow fading.

As the channel state is stable during each frame slot, the
scheduling decision is made on a frame-by-frame basis. At the
beginning of each frame slot, a frame is played out, and video
data units are scheduled for transmission. The scheduling
action is defined as a set of ordered video data units

U =
{

(f1, �1), (f2, �2), . . . , (f|U |, �|U |)
}

. (1)

When scheduling action U is taken, the associated data units
are transmitted sequentially. Each scheduled data unit is pack-
etized into physical layer packets and each packet is repeatedly
transmitted, i.e., if packet error occurs, until acknowledged.

In this paper, we consider data unit level scheduling. If a
packet-level rate-quality model such as [10] is available, our
MDP formulation can also be used to optimize the packet-level
scheduling policy.

III. MDP-Based Model

In this section, we propose an MDP-based model to de-
termine the near-optimal scheduling policy. To that end, we
describe the scheduler’s state space and the policies to be
considered. We then show how to reduce the scheduling
problem to a finite-state Markov decision problem using
reasonable approximations. With the MDP-based model, the
optimal scheduling policy is computed offline via value it-
eration. The computed policy can then be used for online

adaptive scheduling. To validate the optimality of the MDP-
based scheduling policies, we develop a performance upper
bound at the end of this section.

A. Scheduling Policy and State Space
Considering all possible scheduling actions makes defining

the scheduling policy and representing the buffer state unman-
ageably complex. On one hand, to capture the buffer state, the
frame index and the layer index of each received data unit need
to be recorded. If we assume an infinite playback buffer, the
number of received data units is not bounded. So we cannot
represent all possible buffer states using a finite-dimensional
space. On the other hand, not all possible scheduling policies
need to be considered. For example, a quality layer of a frame
should not be transmitted before the lower quality layers of the
frame because an SVC decoder cannot decode a quality layer
without the lower layers [1]. Thus, we need only consider
those scheduling strategies that are not dominated and have
potential to achieve good performance.

Specifically, we consider scheduling policies under the
following assumptions.

Assumption 1: The scheduler always schedules the base
layer data unit of a frame for transmission after the base
layer data unit(s) of the reference frame(s). The scheduler
always schedules the enhancement layer data unit of a frame
for transmission after the data units of the lower layers.

Assumption 2: The scheduler always schedules enough
amount of data such that the transmitter is kept transmitting
during the whole slot.

Assumption 3: We define three sets of data units: Wpre, W ,
and Wpost. When the current frame is a B frame, the set Wpre

contains the data units with frame index f ∈ [f key,−1], where
f key is the frame index of the last expired key picture [see
Fig. 5(a)]. When the current frame is a key picture, we define
Wpre = ∅. Note that Wpre contains all the expired data units
that are used to predict the frames in the current GOP. The set
W contains the data units in all quality layers of the first W

frames, where W is larger than FGOP. The set Wpost contains
the remaining active data units. We assume the scheduler first
sends the data units in W . Then, if all the data in W and
the predictors in Wpre have been received, the policy greedily
schedules all 1 + L quality layers of the frames in Wpost,
i.e., starts transmitting the next frame in Wpost only when
all the layers of the preceding frame have been received [see
Fig. 5(b)].

Assumption 4: In each slot, the scheduler only schedules
data for the frames that have not been decoded. Assumption 1
ensures that the transmission order is compatible with the
prediction order given in Section II-B. Assumption 2 ensures
that the transmitter will not be idle during a slot and the
capacity of the channel is fully exploited. Assumption 3 stems
from the fact that, when many frames are buffered at the
receiver, the scheduler can transmit more enhancement layers
because there is sufficient time before the frames are played
out. In other words, if all quality layers of W frames have been
received, there is no need to worry about the channel capacity
variation in the future. As will be discussed in Section III-C,
this assumption helps to simplify the policy optimization
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Fig. 5. (a) Receiver buffer state when F intra = 8, FGOP = 4, L = 2, and W = 5. vI = 2, vpre = (2, 1), vW = (2, 2, 3, 1, 1), vpost = (0, 0, 0). Note that because
some data units in W have not been received, the data units in Wpost are not sent. (b) Transmission order when the data in W and the associated predictors
in Wpre have been received.

problem. It should be noted that policies under Assumption
3 are different from the sliding window policies defined in
[5]. Indeed, our scheduling policy allows the transmitter to
transmit data units outside the window. Assumption 4 ensures
that the transmitter does not waste resources on the frames
that have been decoded.

Remark 1: The window size W provides a tradeoff between
complexity and optimality. The larger the window, the less
constrained the control policy but the higher complexity.1

We note that although the frames in the current GOP are
played out sequentially, they are decoded together. According
to Assumption 4, if W ≥ FGOP, the frames in W have all been
decoded and the scheduler cannot schedule any data from W .
Therefore, we set W ≥ FGOP.

We define the overall buffer state space V via four sets
V I, Vpre, VW, and Vpost, where V = V I × Vpre × VW ×
Vpost. The set V I records the types and playout deadlines
of the frames in the buffer. The sets Vpre, VW, and Vpost

describe the states of the frames in Wpre, W , and Wpost,
respectively.

V I: We define vI as the frame index of the active I

frame with the earliest playout deadline. Since the
prediction structure is assumed to be the same for
all intraperiods, vI determines the types and playout
deadlines of all the frames in the receiver buffer.

1In our simulations, we find that setting W = 9 is sufficient.

Vpre: If the current frame is a B frame, the state space Vpre

is defined as a vector vpre = (bpre
f key , . . . , b

pre
−1), where

b
pre
f is the number of the received quality layers in

the f th frame and f key is the frame index of the
last expired key picture. If the current frame is a key
picture, Wpre = ∅ and we define vpre = −1.

VW: Similar to Vpre, we define the buffer state space for
W as a vector vW = (bW

0 , . . . , bW
W−1), where bW

f is
the number of the received quality layers in the f th
frame.

Vpost: The set Wpost contains infinite number of frames.
Therefore, recording the number of data units
received for each frame is impossible. We note that,
when Assumption 3 is enforced, the number of data
units received in Wpost must be nonincreasing in
the frame index. Hence, we only need to record the
total number of received data units for each layer.
We define the buffer state space of Wpost as a 1 + L-
dimensional vector vpost = (bpost

0 , b
post
1 , . . . , b

post
L ),

where b
post
� is the number of the received data units

in the �th layer of Wpost. Because the receiver
buffer size is assumed to be large, i.e., essentially
infinite, b

post
� is unbounded. Thus, Vpost = N1+L,

where N = {0, 1, . . . ,∞}.
With the aforementioned definition, buffer state v =
(vI, vpre, vW, vpost) contains all the information that is relevant
to the quality of frames in the receiver buffer.
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In [17] and [18], it is shown that a first-order FSMC can
be used to describe the first-order channel state transition
probabilities for Rayleigh fading channels. First-order FSMC
models have also been validated in [19] and [20] by wireless
channel measurements in urban areas. In our MDP-based
model, we employ a first-order FSMC to describe the dynam-
ics of the channel state.

We denote by x the transmission rate of the transmitter, i.e.,
the number of bits transmitted in a time slot �T . We denote by
y the packet error rate of the channel. We define the channel
state as c = (x, y). The channel state space is C =

{
c1, ..., c|C|

}
,

where ci = (xi, yi) is the ith channel state. The state transition
matrix Pc is a |C|× |C| matrix with entry Pc

i,j = P(cj|ci) being
the transition probability from state ci to cj .

The system state space S is defined as the product of the
buffer state space V and the channel state space C. For each
state s ∈ S, we define a feasible control set Us that contains all
the scheduling actions [see (1)] complying with all the three
assumptions. The state s contains all the information about the
receiver buffer and the channel. The transmitter must decide
which action in Us to take in order to minimize the distortion.
We define the scheduling policy μ(·) as the mapping from
the system state s to an action in Us. Under given scheduling
policy μ, the system state transit as a controlled Markov
chain. The state transition probability Pμ(·|·) is determined by
the scheduling policy μ (see Appendix A for detail). In the
following sections, we show how to optimize the scheduling
policy μ(·).

B. Optimization Objective

Since the channel condition is modeled as a random process,
we denote by (Ct, Vt, St)t∈N the random processes modeling
channel, buffer, and system state, respectively. Accordingly,
we denote S = limt→+∞ St . We define a function d(s) of state
s as the estimated distortion of the frame that is played out
at state s.2 Our aim is to find an optimal policy μ∗(·) that
minimizes the expectation of distortion, i.e.,

Jμ = Eμ [d(S)] (2)

where Eμ[·] is the expectation over the stationary distribution
of the controlled Markov chain under policy μ.

We now introduce the definition of d(s). If the displayed
frame is a key picture (I frame or P frame), we estimate its
distortion using the rate-distortion model in Section II-C as

d(s) =

{
dI (z(s)) : for I frames
dP (z(s)) : for P frames

(3)

where z(s) denotes the amount of received data for the
displayed frame at state s. If the displayed frame is a B frame,
which is encoded using all the 1 + L layers of its reference
frames as predictor, the distortion cannot be directly estimated
using the rate-distortion model in Section II-C because the
loss in the enhancement layers of its reference frames causes
encoder–decoder predictor mismatch, which is also known as
drift in SVC [1]. We employ the model proposed in [21] to take

2Since in each slot, a frame is played out before the scheduling actions are
taken. Therefore, d(s) is not a function of the actions taken at the state s.

into account the distortion due to drift. Let
{

v̂ref
i , i ∈ 1, 2

}
denote the predictor for the B frame at the encoder, i.e., the
pixel value of the ith reference frame with all the 1+L layers.
Let
{

ṽref
i , i ∈ 1, 2

}
be the the predictor for the B frame at the

decoder, i.e., the pixel value of the ith reference frame with
all the received quality layers. The drift of the reference frame
is thus εdft

i = ṽref
i − v̂ref

i . In [21], it is shown that the MSE of
a type-Bτ frame can be estimated as

d̃(s) = dBτ

(z(s))+
1

4
E
[
(εdft

1 )2
]

+
1

4
E
[
(εdft

2 )2
]

+
1

2
E
[
εdft

1 εdft
2

]
(4)

where dBτ

(z(s)) is the rate-distortion function defined in
Section II-C and the other terms on the right-hand side
are the distortions due to drift. Since E[(εdft

1 − εdft
2 )2] =

E[(εdft
1 )2] + E[(εdft

1 )2] − 2E[εdft
1 εdft

2 ] ≥ 0, we have E[εdft
1 εdft

2 ] ≤
1
2 E[(εdft

1 )2] + 1
2 E[(εdft

2 )2]. Thus, d̃(s) is upper bounded by
dBτ

(z(s)) + 1
2 E[(εdft

1 )2] + 1
2 E[(εdft

2 )2]. We use this upper bound
as a proxy of the B frame’s distortion in our MDP model. The
function d(s) is defined as

d(s) = dBτ

(z(s)) +
1

2
E
[
(εdft

1 )2
]

+
1

2
E
[
(εdft

2 )2
]
. (5)

The term E[(εdft
1 )i] is the estimate from the distortion of the

reference frame as follows. Let vref
i be the original pixel value

of the reference frame before encoding. The decoding error of
the reference frame is thus εref

i = ṽref
i − vref

i = (ṽref
i − v̂ref

i ) +

(v̂ref
i − vref

i ), where ṽref
i − v̂ref

i = εdft
i is the distortion due to

drift and v̂ref−vref
i is the distortion due to encoding. Assuming

ṽref
i − v̂ref

i and v̂ref
i −vref

i are uncorrelated,3 we have E[(εref
i )2] =

E[(εdft
i )2] + E[(v̂ref

i − vref
i )2]. Since the B frame is predicted by

the Lth enhancement layer of the reference frame, we have
E[(v̂ref

i − vref
i )2] = dL. Denoting by dref

i (s) = E[(εref
i )2] the

distortion of the reference frame, we have

E[(εdft
i )2] = dref

i (s)− dL. (6)

Substituting (6) into (5), we have

d(s) = dBτ

(z(s)) +
1

2

[
dref

1 (s) + dref
2 (s)
]− dL. (7)

The distortion of the reference frame dref
i (s) can be recursively

estimated using (3) and (7). Because the prediction structure
is acyclic, the recursion terminates when the reference frame
is a key picture and (3) applies.

It should be noted that, in (7), the distortion is overestimated
using an upper bound of (4), as will be shown by the
simulation results in Section III-F. This overestimation does
not sacrifice the quality of the decoded videos.

C. Finite-State Problem Formulation

Since the state space Vpost is infinite, the state space S is also
infinite. Optimizing the scheduling policy over this infinite-
state space is intractable. We define a set Wbuf as the data units
in window W and their associated predictors in Wpre. With

3This assumption is empirically true. We calculated the correlation coeffi-

cient of ˜vref
i − ̂vref

i and ̂vref
i − vref

i using the frames of test sequence Foreman,
Paris, and Bus. The average correlation coefficient is 0.05.
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Fig. 6. Dynamics of the system �μ and the corresponding simplified system
˜�μ. (a) �μ. (b) ˜�μ.

Assumption 3, the scheduling policy is actually fixed when all
the data in Wbuf are received. We only need to determine the
optimal scheduling policy for states where some of the video
data in Wbuf has not been received, which is a finite-state
set. The system state, however, still evolves in the infinite-
state space S. In the following, we show how to simplify this
infinite-state space problem to a finite-state problem.

We define the set of states where some of the video data in
Wbuf has not been received as follows:

SW =
{

s|s ∈ S, Wbuf �⊂ O(s)
}

(8)

where O(s) is the set of buffered video data units when the
state is s. We define another subset of S as the complement
of SW:

SW =
{

s|s ∈ S,Wbuf ⊆ O(s)
}

. (9)

For all the states in SW, all the video data units in Wbuf has
been received.

Given a policy μ(·), the system state evolves as a controlled
Markov chain in set SW ∪ SW. Because the transmission rate
is finite, the number of states in SW that can be reached from
SW in one step is also finite. We formally define this set of
states as follows:

S� = {s′|s′ ∈ SW; ∃ s ∈ SW, s.t., Pμ(s′|s) > 0} (10)

where Pμ(s′|s) is the state transition probability under policy
μ (for the expression for Pμ(s′|s), see Appendix A). Thus, to
move from SW into the set SW, the system state first hits a
state in S� and then stays in SW for some time. During this
period, the decoded video distortion is always dL, because all
the layers in Wbuf are available. The evolution of the system
when it moves into set SW affects the performance of the
system. In general, the longer it stays in SW, the better the
performance is. Although the scheduling policy in SW is fixed
as described in Assumption 3, the policy in SW determines
how frequently the system state will hit SW and thus critically
impacts the system performance.

In the following, we denote the system under a given policy
μ as system �μ. Let tμ(s) be the expected time spent by �μ

in SW after it enters SW at state s ∈ S�. Let P̃μ(s′|s) denote
the probability that �μ jumps back to SW at state s′ ∈ SW

after it enters SW at state s. To find the optimal policy, we
define a finite-state system �̃μ as follows.

Definition 1: A system �̃μ is called the simplified system
of the original system �μ if it has the following dynamics.

1) The system is a controlled semi-Markov process over
state space S̃ = SW ∪ S�. In any state s ∈ S̃, the
distortion is d(s) as in (3) and (7). In any state in SW, the
system evolves according to the policy μ. The system
state transition probability is Pμ(·|·).

2) When the system jumps to a state s ∈ S�, it spends tμ(s)
slots in s with distortion dL for each slot. The system
then transitions to a state s′ ∈ SW with probability
P̃μ(s′|s) (see Fig. 6).

It should be noted that �̃μ is not coupled with the original
system �μ. It just shares some properties with the original
system. The following theorem relates the distortion under �̃μ

and that of �μ.
Theorem 1: If the jump chain of the original system �μ

is positive recurrent, then the time-average video distortion of
�μ is the same as the simplified system �̃μ.

Proof Sketch: If the jump chain is positive recurrent,
the jump from SW to S� can partition the Markov process
into i.i.d. segments. We only need to optimize the policy μ

to minimize the average distortion in each segment. Every
segment consists of two consecutive subsegments. During the
first subsegment, s ∈ SW. In the other subsegment, s ∈ SW.
Because every state in SW has the same distortion dL, we can
abstract the first subsegment as a single state with transition
probability P̃μ(·|·). This simplified system provides the same
average distortion as the original system. For a detailed proof,
see the technical report [22].

Remark 2: The positive recurrent condition for the jump
chain means that the average throughput of the channel is
neither too large nor too small relative to the average data
rate of the video. If the average throughput of the channel is
very large, the receiver buffer can always buffer enough frames
and dynamic scheduling is unnecessary. If the average channel
throughput is too small, the channel cannot support the video
stream and dynamic scheduling cannot help either.

As indicated by Theorem 1, given any policy μ, the video
distortion of �μ is the same as �̃μ. Thus, we can optimize
our policy with respect to �̃μ, which has a finite-state space,
and a standard policy optimization algorithm can by applied.

Before we can apply an MDP algorithm to optimize the
policy, we need to compute tμ(s) and P̃μ(s′|s) for every state

s ∈ S� and s′ ∈ SW. Both tμ(s) and P̃μ(s′|s) only involve
dynamics of the system in SW. Details on how to compute
tμ(s) and P̃μ(s′|s) are found in [22].

D. Determining Optimal Policy via Value Iteration

Given tμ(·) and P̃μ(·|·), the optimal policy for an MDP can
be determined for the simplified system �̃μ, which is also the
optimal policy of �μ. Let sini be any state in S̃ = SW ∪ S�.
The hitting time to state sini can partition the process into i.i.d.
cycles. Optimizing the policy μ(·) in the cycles minimizes the
time-average video distortion of the system. Similar to the
derivation in [23, p. 441], this is equivalent to an average-cost
minimization problem with stage-cost (d(s)− λ) η(s), where λ

is the expected average-cost of each cycle, i.e., the average
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distortion. The function η(s) is defined as

η(s) =

{
1 : s ∈ SW

tμ(s) : s ∈ S�.

Note that d(s) is the cost of spending one slot on state s and
λ is the expected cost per slot. Therefore, d(s)−λ is the extra
cost of spending one slot on state s. Since η(s) is the average
time spent on state s, (d(s) − λ)η(s) is the total extra cost of
visiting state s. Let us denote by h(s) the average cost to go
in each cycle when the system starts at state s. Then, we have
the following Bellman’s equation array:

h(s) = (d(s)− λ) η(s) +
∑

s′∈SW∪S�

Pμ(s′|s)h(s′) (11)

where h(sini) = 0. To find the optimal policy, the standard value
iteration algorithm can be applied [23, p. 430].

On the one hand, the assumptions on scheduling policy
result in the finite-state MDP-based formulation. On the other
hand, the assumptions may render the derived scheduling
policy suboptimal. To verify that the performance of the
scheduling policy derived from the MDP formulation is ac-
tually close to optimal, we prove a performance upper bound
in the next section.

E. Performance Upper Bound

As discussed in Section II-C,
{

dk(zt), k ∈ K} are the rate
quality models of type-k frames when all the predictors have
also been received. Since dk(zt) does not incorporate the
distortion due to drift, the time-average distortion of the
transmitted video is at least 1

n

∑n
t=1

∑
k∈K dk(zt)1tk , where n

is the number of frames in the video sequence and 1k
t is the

indicator that the tth frame is a type-k frame. Let rt be the
amount of data that is received in the tth slot; a distortion
lower bound of any scheduler is given by the following offline
optimization problem

minimize
z1:n

1

n

∑
k∈K

n∑
t=1

dk(zt)1
k
t

s.t.
1

t

t∑
i=1

zi ≤ 1

t

t∑
i=1

ri, ∀t ∈ {1, 2, . . . , n}

(12)

where the constraint 1
t

∑t
i=1 zi ≤ 1

t

∑t
i=1 ri guarantees that

the received data for the frames displayed before time t does
not exceed the cumulative throughput prior to time t. We can
further relax the constraints in (12) by only keeping the last
one, i.e., when t = n. The relaxed optimization problem is then
given by

minimize
z1:n

1

n

∑
k∈K

n∑
t=1

dk(zt)1
k
t

s.t.
1

n

n∑
t=1

zt ≤ 1

n

n∑
t=1

rt. (13)

Let d̂k(zt) be the convex envelope of dk(zt) (see Fig. 4).
Since dk(zt) are lower bounded by d̂k(zt), we can bound

problem (13) by

minimize
z1:n

1

n

∑
k∈K

n∑
t=1

d̂k(zt)1
k
t

s.t.
1

n

n∑
t=1

zt ≤ 1

n

n∑
t=1

rt. (14)

Let nk =
∑n

t=1 1k
t denotes the number of type-k frames.

Since the functions d̂k(zt) are convex, by Jensen’s inequality,
we have

1

nk

n∑
t=1

d̂k(zt)1
k
t ≥ d̂k

(
1

nk

n∑
t=1

zt1
k
t

)
.

Problem (14) can then be bounded by

minimize
z1:n

∑
k∈K

nk

n
d̂k

(
1

nk

n∑
t=1

zt1
k
t

)

s.t.
∑
k∈K

nk

n

(
1

nk

n∑
t=1

zt1
k
t

)
≤ 1

n

n∑
t=1

rt. (15)

If the video is reasonably long, e.g., several minutes, the
frame number n will be very large. If we let n → ∞ and
assume the channel throughput rt is ergodic, 1

n

∑n
t=1 rt will

converge to the ergodic capacity ravg = limn→∞ 1
n

∑n
t=1 rt .

Furthermore, let Fk denote the number of type-k frames in
an intraperiod. We have nk

n
→ Fk

F intra . Similarly, for stationary
policies,4 the limits zk = limn→∞ 1

nk

∑n
t=1 zt1

k
t exist. We have

limn→∞
[

nk

n

(
1
nk

∑n
t=1 zt1

k

t

)]
= Fk

F intra z
k. Thus, we have shown

the following theorem.
Theorem 2: For ergodic wireless throughput and stationary

adaptive scheduling policies, the following optimization gives
an upper bound on performance (lower bound of distortion):

minimize
zk, k∈K

∑
k∈K

Fk

F intra
d̂k(zk)

s.t.
∑
k∈K

Fk

F intra
zk ≤ ravg. (16)

Since the rate-distortion function d̂k(·) is assumed to be
convex, the above optimization problem is convex and easily
solved. In Section III-F, this performance bound will be
employed as a benchmark to evaluate the performance of our
MDP-based scheduling policy.

F. Performance Evaluation of the MDP-Based Scheduling
Policy

In this section, we evaluate the performance of the policy
obtained from our MDP-based formulation. The algorithm was
evaluated on test sequences Foreman, Bus, Flower, Mobile,
and Paris [24]. These video sequences were encoded using
H.264/SVC reference software JSVM [25] with a base layer
and a CGS enhancement layers. The intraperiod and IDR
period were set to F intra = 16. The GOP length was fixed
at FGOP = 4. The QP of the base layer, denoted by QPbase,

4A policy is called stationary if it is a function of state s and the function
is invariant with respect to time t.
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TABLE I

Encoding Parameters and Rate-Distortion Model Parameters of the Tested Sequences

Sequences Layer 0 (base layer) Layer 1 Layer 2

QP ωI
0, ω

P
0 , ωB1

0 , ωB2

0 /Byte d0/MSE ωI
1, ω

P
1 , ωB1

1 , ωB2

1 /Byte d1/MSE ωI
2, ω

P
2 , ωB1

2 , ωB2

2 /Byte d2/MSE
Foreman 30 6712, 2499, 928, 520 16.27 8302, 8293, 3373, 2775 5.491 5844, 5773, 2177, 1893 4.124

Bus 38 5920, 2417, 889, 568 100.8 7837, 8003, 3390, 2925 41.35 4636, 4412, 1577, 1339 21.65
Flower 40 8261, 2076, 548, 324 172.1 6786, 6900, 1951, 1611 96.66 6633, 6610, 2008, 1545 30.85
Mobile 40 9648, 1556, 510, 262 186.0 9090, 9193, 2541, 2171 89.90 7627, 6894, 1973, 1701 37.35
Paris 32 12353, 2640, 865, 463 32.33 9850, 9457, 2103, 1571 18.59 8091, 7987, 2024, 1555 5.420

was chosen such that the data rate of the base layer is lower
than the average channel throughput. The QP of the CGS
enhancement layer is set as QPbase − 10. We employ this
configuration to make sure that the channel is at least good
enough to support the base layer. Otherwise, any scheduling
policy cannot provide acceptable video quality. The CGS is
split into two MGS layers. The first MGS layer contains six
of the 16 transform coefficients of the CGS layer. The other
ten coefficient belongs to the second MGS layer. The QPs
and rate-distortion model parameters of the encoded video
sequences are shown in Table I. Parallel to [9] and [10], we
employ the FSMC channel model proposed in [17] to model
the dynamics of Rayleigh fading channels. The SNR at the
receiver is partitioned into four regions using the algorithm
proposed in [17]. In our simulations, we set the average SNR
to �avg = 10dB. For each sequence, 200 transmissions were
sent over the simulated channel. A startup delay constraint
was fixed to 200 ms, i.e., video playback began six frames
after the transmission began. After each transmission, a trace
file that recorded the packet loss in each time slot was
generated. We used the bitstream extractor of JSVM to remove
those dropped packets. The extracted bitstreams were decoded
using the JSVM decoder with frame copy error conceal-
ment. For more details about the FSMC channel model, see
Appendix B.

The performance of the MDP-based scheduling algorithm
was tested over the simulated Markov channel models with
different Doppler frequencies (f d = 5 and 3Hz, respectively).
The simulation results are summarized in Tables II and III. The
visual quality is measured via the MS-SSIM index that cor-
relates well with human objective judgments [26]. The time-
averaged MS-SSIM value is further converted to difference
mean opinion score (DMOS) using the following mapping

qdmos = 13.3442 log(1− qssim) + 3.6226(1− qssim) + 77.0117
(17)

where qssim denotes the time-averaged quality measured in
MS-SSIM and qdmos is the corresponding DMOS value. Equa-
tion (17) is obtained by logistic regression using the MS-SSIM
indices and MOS values of the images in the LIVE database
[27]. DMOS ranges from 0 to 100. Value 0 means perfect
visual quality and value 100 means bad visual quality. Roughly
speaking, value 50 means fair quality. It can be seen from
Tables II and III that the DMOS value of the MDP-based
scheduling policy is worse than the performance bound by at
most 2, which is visually insignificant. Given that the bound
given by Theorem 2 is an upper bound (i.e., a lower bound

of DMOS value), the MDP-based scheduling policy is indeed
near-optimal.

IV. Near-Optimal Heuristic Online Scheduling

Algorithm

Although the MDP-based formulation makes it possible to
compute a good scheduling policy using value iteration algo-
rithm, offline computation of such policies requires a priori
knowledge of the channel dynamics. This motivates us to
design a simple online scheduling policy that delivers similar
performance as the MDP-based policy that only requires little
a priori knowledge about the channel dynamics.

A good online video scheduling algorithm should explicitly
take advantage of the channel dynamics and schedule data
from different quality layers as a function of the receiver buffer
state. There are three fundamental questions in designing such
a scheduler: 1) How should one incorporate limited knowl-
edge of channel dynamics in adaptive scheduling? 2) How
should one determine the number of enhancement layers to
schedule? 3) How should one allocate appropriate transmission
rate among current and future intraperiods. In the follow-
ing, we will show how to address these fundamental prob-
lems by reasonably simplifying the MDP-based scheduling
algorithm.

A. Channel Model Simplification

In a practical wireless communication environment, accurate
channel dynamics models such as the state transition probabil-
ity Pc are not generally available. Some basic characteristics
for the channel dynamics can, however, be easily used. At any
slot t, the instantaneous channel throughput rt can be estimated
using receiver channel state information as

r̂t = xt(1− yt),

where (xt, yt) is the channel state at t (see Section III-A).
The ergodic channel throughput ravg can be estimated by
averaging r̂t over time. If we model rt as the realization
of a random process {Rt, t ∈ N}, the temporal correlation
coefficient ρ = cov(Rt,Rt+1)

σ(Rt )σ(Rt+1) can also be estimated from r̂t .
Further, it is reasonable to assume the channel throughput Rt

will typically regress to the mean ravg. This inspires us to use
a simple autoregressive model to capture the dynamics of the
channel. A first order autoregressive model [AR(1)] for Rt is
given as

Rt − φRt−1 = c + Nt (18)
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TABLE II

Performance of the Near-Optimal Policy in SSIM-Predicted

DMOS, f d = 5

Paris Mobile Flower Bus Foreman
MDP Policy 26.9020 38.9033 34.5826 41.8721 32.2426
Upper bound 25.6017 38.0842 34.0626 41.4600 31.6807

TABLE III

Performance of the Near-Optimal Policy in SSIM-Predicted

DMOS, f d = 3

Paris Mobile Flower Bus Foreman
MDP Policy 27.1376 39.0452 35.7828 42.0808 32.4431
Upper bound 25.2314 37.9431 33.7052 41.2611 31.4852

where Nt is an i.i.d. random variable with zero-mean value.
From (18), parameter c and φ can be estimated as φ = ρ and
c = ravg(1− ρ) [28, p. 115] . Thus, we have

Rt − ρRt−1 = ravg(1− ρ) + Nt. (19)

Using this autoregressive model, the amount of data that
will be delivered in the next ζ slots by the channel can be
estimated as

g(r̂t) = E

[
ζ−1∑
a=0

Rt+a|Rt = r̂t

]
=

ζ−1∑
a=0

[
r̂tρ

a + ravg(1− ρa)
]
.

(20)
To obtain an accurate estimate in the near future, we set the

length of the window ζ into the future that will be considered
to be the relaxation time5 of the channel, i.e., ζ = �−(ln ρ)−1�.
In the following, we use this to determine which quality layers
to schedule.

B. Layer Selection

Given the current channel state, receiver buffer state, and
estimated available capacity for a window ζ into the future, the
goal is to determine which layers to schedule. We will focus on
determining the number of enhancement layers which should
be scheduled. We denote by Lsch(st) the number of layers to
be scheduled if the state is st . Once Lsch(st) is determined, the
online scheduling algorithm only schedules data units from
the first Lsch(st) layers.

The layer selection scheme for our proposed online algo-
rithm is motivated by that of the MDP-based policy. Using
g(r̂t) defined in (20), we can estimate the amount of data that
can be delivered in the next ζ slots. Let �(�, st) be the amount
of data that is not currently available at the playback buffer at
time t, and belongs to the first � layers of the next ζ frames
that have not been decoded. The quantities g(r̂t) and �(�, st)
summarize the channel and buffer states for the next ζ slots.
Note that �(�− 1, st) ≤ g(r̂t) < �(�, st) means that we can
probably transmit all the data up to the �th layer in the next
ζ slots. Intuitively, we can simply choose Lsch(st) = � − 1
when �(�− 1, st) ≤ g(r̂t) < �(�, st). As discussed next, this

5The relaxation time is defined as the temporal distance at which the
temporal correlation coefficient is reduced to 1

e

Fig. 7. Given different relationship between g(s) and �(�, s), the proportions
of states corresponding to different Lsch(s) are shown in different colors.
Results are obtained under Rayleigh fading channels with different Doppler
shifts and are calculated on five different video sequences (Bus, Foreman,
Flower, Mobile, and Paris). (a) f d = 5 Hz. (b) f d = 3 Hz.

layer selection scheme can be motivated by the near-optimal
scheduling policies computed for the MDP-based model.

Note that r̂t = xt(1−yt) is determined by state st; thus, g(r̂t)
can also be written as a function of st , i.e., g(st). Suppose
we partition the state space into subsets P� = {s ∈ S :
�(�− 1, s) ≤ g(s) < �(�, s)}, � ∈ {1, . . . , L + 2} and calculate
the fraction of states in P� where the MDP-based policy
only schedules the first � − 1 layers.6 As shown in Fig. 7,
for 71% of the states of P1 and P2, the MDP-based policy
only schedules the first layer. For about 65% of the states
of P3, the MDP-based policy only schedules the first two
layers. Finally, the MDP-based policy will schedule all the
layers on 81% of the states in P4. These observations justify
our intuition regarding layer selection. In our proposed online
scheduling algorithm, we will simply choose Lsch(st) = �− 1
if �(�− 1, st) ≤ g(r̂t) < �(�, st). In other words, our
heuristic algorithm determines Lsch(st) by roughly estimating
the number of layers that can be transmitted.

C. Resource Allocation Between Current and Future
Intraperiods

In each transmission slot, about r̂t bits of video data are
delivered to the receiver. In the following, we refer to r̂t as

6We define �(L + 2, st) = +∞.
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Algorithm 1 Online Adaptive Scheduling Algorithm

Input: st , ravg, xt , yt , and ρ

1: ζ = �−(ln ρ)−1�; r̂t = xt(1− yt)
2: loop t

3: g(r̂t)←
∑ζ−1

a=0 [r̂tρ
a + ravg(1− ρa)]

4: for � = 1→ L + 1 do
5: Compute �(�, st)
6: if g(r̂t) < �(�, st)
7: break
8: end if
9: end for

10: if � = 1 then
11: Lsch(st)← 1
12: else
13: Lsch(st)← �− 1
14: end if
15: Compute �cur(Lsch, st) and �I(Lsch, st)
16: �t ← �I(Lsch,st )

�cur(Lsch,st )+�I(Lsch,st )
17: Schedule min(�t × r̂t , �

I(Lsch, st)) bits from I.
18: Schedule r̂t −min(�t × r̂t , �

I(Lsch, st)) bits from other
active frames.

19: end loop

the budget for slot t. Once Lsch(st) is determined, we still
need to determine how to allocate this budget among current
and future intraperiods. Sometimes it is necessary to transmit
data associated with next I frame before the data units in the
current intraperiod. For example, when the next I frame is
approaching its display deadline and its base layer has not yet
been received, if we focus on transmitting the frames in the
current intraperiod sequentially, this increases the risk that the
next I frame cannot be decoded before its deadline. This in
turn would cause severe decoding failures throughout the next
intraperiod.

Let I be the data units in the undecoded I frame that has the
earliest display deadline. We denote by �cur(�, st) the amount
of unreceived data in the first �th layer of current intraperiod
at state st . We denote by �I(�, st) the amount of unreceived
data in the first �th layer of I at state st . We propose the fol-
lowing heuristic for allocating the bit budget between current
intraperiod and I. In each transmission slot, the scheduling
algorithm allocates up to �t = �I(Lsch(st ),st )

�cur(Lsch(st ),st )+�I(Lsch(st ),st )
of the

transmission bit budget to I. In other words, the number of
bits allocated to I is min(�t × r̂t , �

I(Lsch(st), st)).
Here, �t gives the relative importance of the next I frame

and current intraperiod. If �I(Lsch(st), st) = 0, then �t = 0%.
It is not necessary to transmit any data for the next I frame.
If �pre(Lsch(st), st) = 0, then �t = 100%. We only focus on
transmitting the future intraperiods.

The online scheduling algorithm is summarized in
Algorithm 1.

D. Performance Evaluation of the Online Scheduling
Algorithm

The performance of the online scheduling algorithm was
tested over the simulated Markov channel models with differ-

Fig. 8. Performance comparison of different scheduling algorithms. Video
quality is measured in DMOS which is predicted by MS-SSIM using (17).
(a)f d = 5 Hz. (b) f d = 3 Hz.

ent Doppler frequencies (f d = 5 and 3 Hz, respectively). This
setting is the same as the simulation setting in Section III-F.
The results are summarized in Fig. 8. As can be seen, the
performance of the proposed online scheduling algorithm
is almost as good as the MDP-based scheduling algorithm.
Moreover, the online scheduling algorithm’s performance is
close to the bound given by Theorem 2. We conclude it is a
near-optimal scheduling algorithm.

We have also tested the performance of the online algorithm
without bit budget allocation between current and future
intraperiods. As can be seen, the performance is worse than
the MDP-based scheduling policy and the performance bound.
This motivates the necessity of allocating bit between current
and future intraperiods.

V. Conclusion

We developed adaptive scheduling algorithms for stored
scalable video transmission in wireless channels. By modeling
the wireless channel as a Markov chain, an MDP model
was proposed in which policies that minimize the distortion
of decoded videos can be computed. By simplifying the
scheduling algorithm obtained from the MDP formulation,
we proposed an online scheduling algorithm that only re-
quires limited knowledge of channel dynamics. Simulation
results demonstrated the near-optimality of the proposed online
scheduling policy versus a proposed bound on performance.
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Appendix A

Transition Probability

Notations: Let 1 be the unit vector of all-ones and 0 be
the zero vector. max{a, b} is the componentwise maximum of
vector a and b. 1(·) is the indicator function.

Let st = (ct , vt) and Ust
be the system state and the

corresponding feasible control set at slot t, where ct =
(xt, yt) and vt = (vI

t , vpre
t , vW

t , vpost
t ). At the beginning of

each slot, one frame is decoded and played out. Let v+
t =

(vI+
t , vpre+

t , vW+
t , vpost+

t ) denote the buffer state right after the
first frame is displayed. For vI+

t , we have

vI+
t =

{
F intra − 1 if vI

t = 0

vI
t − 1 if vI

t �= 0.
(21)

The first frame in W is moved into Wpre; thus, we have

vpre+
t =

(
b

pre
f key , . . . , b

pre
−1, b

W
0

)
. (22)

The first frame in Wpost moves into W . Thus, we have

vW+
t =

(
bW

1 , . . . , bW
W−1,

∑L

�=0
1(bpost

� ≥ 1)

)
. (23)

For the set Wpost, once the current frame is played out, we
have

vpost+ = max
{

vpost − 1, 0
}

. (24)

After the first frame is displayed, the transmitter begins to
sequentially transmit the collection of video data units indi-
cated by the action Ut = μ(st) = {(f1, �1), . . . , (f|Ut |, �|Ut |)}.
Let �Ut = {(f1, �1), . . . , (fnt

, �nt
)} denote the completely

received data units by the end of the slot, where nt is the
number of received data units. Among the data units in �Ut ,
let �vpre

t and �vW
t be the number of newly received data

units for each frame in set Wpre+ and WW+, respectively. At
the beginning of the (t + 1)th slot, we have the following state
transition relationship:

vpre
t+1 = vpre+

t + �vpre
t (25)

vW
t+1 = vW+

t + �vW
t . (26)

Similarly, we denote by �vpost
t =

(
�b

post
0 , . . . , �b

post
L

)
the

number of newly received data units for each layer in frame
set Wpost+. The state transition relationship of Wpost is

vpost
t+1 = vpost+

t + �vpost
t . (27)

The amount of video data in �Ut , denoted by �(vt , �Ut), can
be estimated according to buffer state vI

t and the rate-quality
model introduced in Section II-C. Specifically, for each data
unit in �Ut , we first determine the frame type according to vI

t

and then estimate the amount of data by the rate-quality model.
The set �Ut records the completely transmitted data units
up to (fnt

, �nt
)th data unit. However, data unit (fnt+1, �nt+1)

is only partially received. Denoting the amount of data in
unit (fnt+1, �nt+1) by �̃(vI

t , �Ut), the amount of received data
is at least �(vI

t , �Ut) and at most �(vI
t , �Ut) + �̃(vI

t , �Ut).
Assuming the physical layer packet length is LPHY, there
is N = � xt

LPHY � packet transmissions during a time slot.

The number of successfully transmitted packets is at least
Nl = ��(vI

t ,�Ut )
LPHY � and is less than Nh = ��(vI

t ,�Ut )+�̃(vI
t ,�Ut )

LPHY �.
As assumed in Section II-D, the channel state is constant over
each slot. Thus, the packet losses are independent within each
slot. The number of successful packet transmissions in a slot is
distributed binomially. Hence, the state transition probability
from st = (ct , vt) to st+1 = (ct+1, vt+1) is

Pμ(st+1|st) =

[
Nh−1∑
nt=Nl

(
N

nt

)
yN−nt

t (1− yt)
nt

]
P(ct+1|ct) (28)

where the first multiplicative term is the transition probability
of the receiver buffer state from vt to vt+1 and the second term
is the transition probability of the channel state from ct to ct+1.

Appendix B

Simulation Settings

We employ the FSMC channel model proposed in [17] to
model the dynamics of Rayleigh fading channels. The SNR at
the receiver is partitioned into |C| regions using the algorithm
proposed in [17]. Let �i be the partition thresholds, where
�0 = −∞ and �|C| = ∞. Let �̃k be the representative SNR
in the kth region. For Rayleigh fading channels, we have

�̃k =

∫ �k

�k−1
λp(λ)dλ∫ �k

�k−1
p(λ)dλ

(29)

where p(λ) = 1
�avg exp(− λ

�avg ) is the probability distribution
function of the received instantaneous SNR of Rayleigh fading
channels with average SNR �avg. According to [17], the state
transition probability Pc is computed as

Pc
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K(�j)�T

πi
, if j = i + 1

K(�i)�T

πi
, if j = i− 1

1− K(�j)�T

πi
− K(�i)�T

πi
, if j = i

0, otherwise

(30)

where πi =
∫ �i

�i−1
p(λ)dλ. K(�i) =

√
2π�i

�avg f d exp(− �i

�avg ) is the

level crossing rate of threshold �i where f d is the Doppler fre-
quency. The coherence time is estimated via tcor = 0.423/f d.
In our simulations, we set |C| = 4 and �avg = 10dB.

We assume that BPSK, QPSK, and 8PSK are used for
modulation. The symbol error rate ps

k in the kth SNR region is
ps

k = 2Q(
√

2�̃k sin π
2M ), where M = 1, 2, 3 for BPSK, QPSK,

and 8PSK, respectively. Each packet contains 2048 symbols.
Thus, the packet length LPHY = 2048×M, where M = 1, 2, and
3 for BPSK, QPSK, and 8PSK, respectively. The transmission
time for each packet is �t = 1.5 ms. The transmission data
rate is given by xk = �T

�t
LPHY. The packet error rate is given

by yk = 1 − (1 − ps
k)2048. The modulation scheme for kth

channel states is chosen such that the throughput xk(1−yk) is
maximized.
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